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INTRODUCTION 

 

Understanding the foundational concepts of statics and dynamics is crucial for engineers and 
physicists working on various mechanical systems and structures. In the vast realm of 
mechanical engineering and physics, the principles of statics and dynamics stand as 
cornerstone disciplines. They offer invaluable insights into understanding, predicting, and 
controlling the behaviors of objects, from stationary to those in complex motion. From the 
fundamental force systems that dictate equilibrium states to the intricate dance of bodies in 
motion, these principles form the bedrock upon which many modern engineering marvels are 
built. Whether you're delving into the effects of loads on beams, the nuances of friction, or the 
intricate ballet of kinematics and kinetics, a foundational grasp of these areas is imperative. 
Additionally, understanding collisions, both central and otherwise, and their resulting 
interactions becomes vital in many real-world applications. This comprehensive overview 
aims to shed light on these essential topics, paving the way for deeper exploration and 
mastery. 

Basic knowledge necessary for performing calculations in the field of statics and dynamics. 
Types of force systems, calculating resultant forces, equilibrium. Loads, load diagrams in 
beams. Cases of friction.  

Kinematics of center of gravity and rigid body. Kinematic characteristics of motion. 
Examination of special movements. Elemental movements of a rigid body. Finite motion of a 
rigid body.  

 Kine-matics of structures. Kinetics of material point and rigid body. Foundation of kinetic. 
Free and forced movements. Moments of inertia. Rigid body pulse, pulse moment, kinetic 
energy. Impulse theorem, vortex theorem. Energy and work. Collision of bodies. Central 
collision, collision dia-gram. 
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1 CENTER OF GRAVITY – CENTROID 

 

Every object on Earth is affected by gravity. Because this effect acts on every part of the body, 
it becomes a spatially distributed force system. This force system can be treated parallel, as 
the distance from the centre of the Earth is large compared to the size of the bodies under 
study. 

 
The gravity strength distribution of Earth 

This force system can be substituted with its resultant. The acting point of this resultant force 
is the centre of mass of the object. The centre of mass of a geometric object of uniform density 
is called centroid. 

 

 
The waiter's hand is under the center of mass of the system 
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1.1 CENTROID LOCATION CALCULATION 

 

The location vector can be calculated as follows: 

 

where: 

• rS is the location vector of the centroid;  

• m is the mass of the body; 

• r is the location vector of the mass element dm. 

 

In case of uniform density: 

r = constant 

m = r *V  

dm = r *dV  

 

Thus:  

Each coordinate of the location vector of the centroid can be 
given as the summation of the product of the volume and 
coordinate of each part divided by the total volume. 
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1.2 CENTROID OF PLANAR SHAPES 

 

Significant dimension is surface area. 

 

 

The calculation of the centroid of planar shapes is produced by the area like so: 

 

Thus: 

 

Each coordinate of the location vector of the centroid can be given as the summation of the 
product of the area and coordinate of each part divided by the total area. 

But in order to do so, the centroid coordinates of certain basic planar shapes should be known. 
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1.2.1 CENTROID OF BASIC PLANAR SHAPES 

 

Rectangle: 
𝐴 ൌ 𝑎 ∗ 𝑏; 

𝑥௦ ൌ
௕

ଶ
  

𝑦௦ ൌ
௛

ଶ
;  

 

Circle: 
𝐴 ൌ 𝑟ଶ𝜋; 
𝑥௦ ൌ 0;  
𝑦௦ ൌ 0; 

Semicircle: 

𝐴 ൌ
௥మగ

ଶ
;  

𝑥௦ ൌ 0;  

𝑦௦ ൌ
ସ௥

ଷగ
;  

 

Quarter circle: 

𝐴 ൌ
௥మగ

ସ
; 

𝑥௦ ൌ
ସ௥

ଷగ
;  

𝑦௦ ൌ
ସ௥

ଷగ
;  

 

Segment of a circle: 

𝐴 ൌ 𝛼 ∗ 𝑟ଶ;  

𝑥௦ ൌ
ோ∗௦௜௡ఈ

ఈ
;  

𝑦௦ ൌ 0; 
All angles are in radians! 
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Right triangle: 

𝐴 ൌ
𝑏 ∗ ℎ

2
; 

𝑥௦ ൌ
𝑏
3

; 

𝑦௦ ൌ
ℎ
3

; 

Triangle: 

𝐴 ൌ
𝑎 ∗ 𝑏

2
; 

𝑥௦ ൌ
𝑏 ൅ 𝑐

3
; 

𝑦௦ ൌ
𝑎
3

; 

Parabolic Spandrel: 

𝐴 ൌ
𝑎 ∗ 𝑏

3
; 

𝑥௦ ൌ
3 ∗ 𝑏

4
; 

𝑦௦ ൌ
3 ∗ 𝑎

10
; 

Semi Parabolic: 

𝐴 ൌ
2 ∗ 𝑎 ∗ 𝑏

3
; 

𝑥௦ ൌ
3 ∗ 𝑏

8
; 

𝑦௦ ൌ
3 ∗ 𝑎

5
; 

 

1.2.2 CENTROID OF COMPOSITE PLANAR SHAPES 

As discussed earlier, the centroid of a composite planar shape can be calculated by dividing 
the shape into basic parts. 
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1.3 CENTROID OF LINES 

 

Significant dimension: length 

 

 

The calculation of the centroid of lines is produced by the length like so: 

 

Thus: 

 

Each coordinate of the location vector of the centroid can be given as the summation of the 
product of the length and coordinate of each part divided by the total length. 

But in order to do so, the centroid coordinates of certain basic lines should be known. 
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1.3.1 CENTROID OF BASIC LINES 

 
 

 

Horizontal line:

 
xs = L/2;  
ys = 0 
 

 

Vertical line: 
 
xs = 0; 
ys = L/2 
 

 

General line: 
 

xs = 
𝑳∙𝒄𝒐𝒔α 

𝟐
; or xs = 

𝒙𝑨ା𝒙𝑩

𝟐
; 

ys = 
𝑳∙𝒔𝒊𝒏α 

𝟐
; 𝒐𝒓 ys = 

𝒚𝑨ା𝒚𝑩

𝟐
 

 
 

 

Circle: 
 

xs = 0; 
ys = 0 
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Semicircle arc: 
 

xs = 
2r

π
;  

ys = 0; 
 

Quarter circle arc: 
 

xs = 
2r

π
;  

ys = 
2r

π
; 

 

General arc: 
 

xs = 
r∙sinα 

α 
;  

ys = 0; 
 

 

1.3.2 CENTROID OF COMPOSITE LINES 

As discussed earlier, the centroid of a composite line can be calculated by dividing the line 
basic segments. 

 

Example: 

  



Modul_2022 // Machine Component Design and Mechanics 

Dávid CSONKA // Gyula VASVÁRI 

DESIGN AND CALCULATION OF MACHINE COMPONENTS 

 

 

13
 

1.3.3 EXAMPLES FOR THE PRACTICAL USE OF LINE CENTROID 
CALCULATIONS:  

 

CUTTER 

The most common example is calculating the 
acting point of a cutting process of a stamp cutter. 
Thus, the hydraulic piston can be precisely 
positioned avoiding any bending load. 

 

 

 

 

TRUSSES 

Any prismatic component can be treated as a line when calculating center of mass. It 
simplifies the calculation a lot. 

 

 

SUBSTITUTION 

Simplifying the centroid calculation of 
complex structures can be achieved by 
substituting the segments with weighted 
lines and using the superpositon 
principle. 

Even the human body can be substituted 
with segments separated at the joints, 
thus being possible to calcualte the 
center of mass in any given body 
position. 
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2 SECOND MOMENT OF AREA 

 

2.1 WHAT IS IT GOOD FOR? 

1. Bending resistance of cross sections. 

2. Selection of the appropriate beam. 

3. Determining the best installation position. 

4. Strength analysis. 

Mechanical design is impossible without it. 

 

 

 

 

 

2.2 DEFINITION 

„Zero order” moment of area 

(area): 

 

First order (static) moment of area 

(moment): 

 

Second order moment of area 

(area moment of inertia): 

 

 

  

𝐼௫ ൐ 𝐼௬
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2.3 SECOND MOMENT OF AREA ON AN AXIS: 

(equatorial moment of area) 

The second moment of area on an axis of a planar object is the surface integral of the given 
area, in which the surface elements are multiplied by the square of their distance from the 
axis. The index of the letter I indicates the axis to which the second moment of area applies. 

 

and 

 

The result is scalar, its value can only be positive. 

 

2.4 SECOND MOMENT OF AREA ON TWO PERPENDICULAR AXES: 

(centrifugal second moment of area) 

The second moment of area on a pair of perpendicular axes of a planar object is the surface 
integral of the given area, in which the surface elements are multiplied by their distances from 
the axes. The two indices of the letter I indicate the pair of axles to which the second moment 
of area applies. 

 

The result is scalar, its value can be positive or negative. 

 

2.5 SECOND MOMENT OF AREA TENSOR: 

 

The standard dimensions of second moment of area: m4, cm4, mm4.   
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2.6 SECOND MOMENT OF AREA ON A POINT: 

(polar second moment of area) 

The second moment of area of a planar object on a point is a surface integral of the given 
area, in which the surface elements are multiplied by the square of their distance from the 
point. The index of the letter I indicates the point to which the second moment of area applies. 

 

The result is scalar, its value can only be positive. 

 

 

 

2.7 PARALLEL COORDINATE TRANSFORMATION 

2.7.1 STEINER’S THEOREM FOR EQUATORIAL AXES: 

The second moment of area of a planar object on any axis is obtained by adding the product 
of the square of the distance between the axes and the area of the plane to the second 
moment of area on a parallel axis which is passing through the center of gravity of the plane. 

 

 

 

 

 

 

 

 

Thus, 

 

  

Second 
moment of area 
on the centroid 

Steiner-member 

Distance of axes Area 
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2.7.2 STEINER THEOREM FOR PERPENDICULAR AXIS PAIR: 

The (centrifugal) second moment of area of a planar object at any perpendicular pair of axes 
is obtained by adding the product of the area of the object and the distance coordinates of 
the axes to the centrifugal second moment of area on the centroid. 

 

 

 

2.8 SECOND MOMENT OF AREA OF A RECTANGLE 

 

On x axis: 

 

On y axis: 

 

On xy pair of axes: 

 

 

 

Second moment 
of area on the 
centroid 

Steiner-member 

Distances of axes Area 
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On centroidal axes: 

 

Centrifugal second moment of area: 

 

 

2.9 SECOND MOMENT OF AREA OF A RIGHT TRIANGLE 

On x axis: 

 

 

 

 

On y axis: 

 

On xy pair of axes: 
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On centroidal axes: 

 

 

Centrifugal second moment of area: 

 

 

2.10 SECOND MOMENT OF AREA OF A SECTOR 

On x axis: 

 

 

On y axis: 

 

On xy pair of axes: 

 

On point O: 
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2.11 SECOND MOMENT OF AREA OF A QUARTER CIRCLE 

On x and y axis: 

 

On centroid axes: 

 

Because of symmetry: 

 

Centrifugal second moment of area: 
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2.12 SECOND MOMENT OF AREA ON ROTATED AXES 

 

On rotated u axis: 

 

On rotated v axis: 

 

On rotated pair of uv axes: 
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3 THE CONCEPT AND REPRESENTATION OF STRESS 

 

3.1 STRESS VECTOR 

 

Definition: The intensity vector of the internal forces distributed on a cross-section. 

Sign: σ 

Dimension: Pa = 
ே

௠మ or MPa = 
ே

௠௠మ  

 

3.2 STRESS TENSOR 

𝐹௉ധധധ ൌ  ൥
𝜎௫ 𝜏௫௬ 𝜏௫௭
𝜏௬௫ 𝜎௬ 𝜏௬௭
𝜏௭௫ 𝜏௭௬ 𝜎௭

൩ 

Normal stresses:  𝜎௫; 𝜎௬; 𝜎௭  

Shear stresses: 𝜏௫௬ ൌ 𝜏௬௫; 𝜏௬௭ ൌ 𝜏௭௬;  𝜏௫௭ ൌ 𝜏௭௫;   

Indexes of shear stress 

 
Direction of stress Plane of stress  
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4 THE CONCEPT AND REPRESENTATION OF DEFORMATION 

4.1 SPECIFIC ELONGATION 

 𝜀 ൌ
∆௟

௟బ
 

The change relative to the original distance between two points in the material. 

 

Specific angle change:  𝛾  : the angle change of two perpendicular axes in the material 

Deformation can be translation and rotation. 

4.2 DEFORMATION TENSOR 

 

Specific elongations: 𝜀௫; 𝜀௬; 𝜀௭. 

Specific angle changes: 

𝛾௫௬ ൌ 𝛾௬௫; 𝛾௬௭ ൌ 𝛾௭௬;  𝛾௫௭ ൌ 𝛾௭௫;    
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4.3 THE DIFFERENTIAL EQUATION OF AN ELASTIC CURVE 

Deformation of a bent beam: 

 

Elementary section during deformation: 

   

Hooke's law applies: 

𝜎 ൌ 𝐸 ∗ 𝜀 

Specific elongation in this case: 

𝜀 ൌ
𝜆

𝑑𝑧
 

The stress in the outermost fiber: 

𝜎 ൌ
𝑀
𝐼௫

𝑓 

Substituting these into the Hooke equation: 

𝜎 ൌ
𝑀
𝐼௫

𝑓 ൌ 𝐸 ∗ 𝜀 ൌ 𝐸 ∗
𝜆

𝑑𝑧
 
         
ሱ⎯⎯ሮ  

𝑀
𝐼௫

𝑓 ൌ 𝐸 ∗
𝜆

𝑑𝑧
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The radius of curvature of the beam (the 
radius of the tangent circle at the given 
location) is r, from which: 

𝜆
𝑑𝑧

ൌ
𝑓
𝑟
 

Thus, the previous equation is transformed: 

𝑀
𝐼௫

𝑓 ൌ 𝐸 ∗
𝜆

𝑑𝑧
   

         
ሱ⎯⎯ሮ    

𝑀
𝐸 ∗ 𝐼௫

ൌ
1
𝑟
 

From the mathematical definition of the tangent circle: 

1
𝑟

ൌ
𝑦′′

ට൫1 ൅ 𝑦ᇱଶ൯
ଷ
 

Under our assumptions, the deformations are small, so that y and y', hence y’2 <<1. For this 
reason, we can use the following approximation: 

ට൫1 ൅ 𝑦ᇱଶ൯
ଷ

≅ 1; thus  
ଵ

௥
ൌ 𝑦′′; 

Differential equation of the curved axis line: 

𝑦ᇱᇱሺ𝑧ሻ ൌ െ
𝑀ሺ𝑧ሻ
𝐸 ∗ 𝐼௫

 

In the equation, y(z) is the function of the curved axis line, M(z) is the moment function, E is 
the elastic modulus of the material of the beam and Ix is the area moment of inertia of the 
cross section on the centre of gravity axis perpendicular to the plane of bending. 

The general solution of the incomplete second-order differential equation can be obtained 
relatively easily by double integration. 
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4.4 DEFORMATION FORMULAE 

Derived from the differential equation of an elastic curve for common constraints and loads.  
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Modul_2022 // Machine Component Design and Mechanics 

Dávid CSONKA // Gyula VASVÁRI 

DESIGN AND CALCULATION OF MACHINE COMPONENTS 

 

 

28
 

5 UNIDIRECTIONAL PURE LOADS 

5.1 HOOKE’S LAW AND UNIDIRECTIONAL DEFORMATION 

As the deformation is unidirectional, only elongation/compression is present. 

STRESS STATE  

 

𝐹௉ധധധ ൌ  ቎
𝜎௫ 0 0
0 𝜎௬ 0
0 0 𝜎௭

቏ or 𝐹௉ധധധ ൌ  ቎
0 𝜏௫௬ 𝜏௫௭

𝜏௬௫ 0 𝜏௬௭

𝜏௭௫ 𝜏௭௬ 0
቏ 

 

DEFORMATION STATE: 

Something like 

 

 or  

 

 

 

However, the stresses and deformations are not always present in all directions, in those 
places in the tensor can be also zeroes. 

 

HOOKE’S LAW: The stress needed to cause deformation scales linearly with respect to that 
deformation. 

𝜎௫ ൌ 𝐸 ∗ 𝜀௫ 

Where E is elastic modulus, a material property. 
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5.2 CENTRAL TENSION AND COMPRESSION 

The force is acting in the centroid of the cross-section and parallel to it. 

 

5.2.1 STRESS STATE:  

 

 

The stress can be calculated by simply 
dividing the normal force with the section area. 

 

5.2.2 HOOKE’S LAW AND DEFORMATION 

 

LONGITUDINAL DEFORMATION: 

 

TRANSVERSAL DEFORMATION: 

 

Where 𝜈 is Poisson’s ratio, a material property. 
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5.3 PURE SHEAR 

The force is acting perpendicular to the cross-section in a single line, thus not bending 
moment. In reality, there is no pure shear, it is always paired with bending, but there are some 
cases when the problem can be simplified and can be treated as if pure shearing was present. 

 

5.3.1 STRESS STATE: 

𝐹௉ധധധ ൌ  ൥
0 𝜏௫௬ 0

𝜏௬௫ 0 0
0 0 0

൩  

𝜏 ൌ
ி

஺
 

 

5.3.2 HOOKE’S LAW AND SHEAR DEFORMATION 

Hooke’s law: 

𝜏௫௬ ൌ 𝐺 ∗ 𝛾௫௬ 

Where G is shear modulus, a material 
property. 
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5.4 PURE TWIST 

A moment vector is acting in the centroid of the cross-section and parallel to it. 

 

5.4.1 STRESS STATE: 

  

or  

 

STRESS DISTRIBUTION 

 

Stress can only be where there is material – obviously. 
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5.4.2 TWIST DEFORMATION 

 

DEFORMATION STATE: 
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5.5 PURE, STRAIGHT BENDING 

A single moment is bending the whole beam. 

 

 

5.5.1 STRESS STATE: 

 

𝜎௫ ൌ
𝑀
𝐼௭

𝑒 

Where: 

M: Bending moment 

Iz: Moment of inertia on the axis of bending 

e: Distance of the neutral axis from the dangerous point 
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STRESS DISTRIBUTION 

 

DANGEROUS POINT: 

The point on the cross-section which is farthest from the neutral axis. The stress from bending 
is maximum at this point. 

 

5.5.2 BENDING DEFORMATION 

  

According to Euler–Bernoulli beam theory: 

Each cross-section of the beam is planar and are at 90 degrees to the neutral axis. 

DEFORMATION STATE 

Simple Hooke’s law applies at every point: 

𝜎௫ ൌ 𝐸 ∗ 𝜀௫ 



Modul_2022 // Machine Component Design and Mechanics 

Dávid CSONKA // Gyula VASVÁRI 

DESIGN AND CALCULATION OF MACHINE COMPONENTS 

 

 

35
 

6 STRESS STATES 

6.1 SPATIAL STRESS STATE  

There are various ways to represent stress state. 

6.1.1 ELEMENTARY UNIT CUBE 

 

 

An infinitesimally small cube can be used to represent the stresses on three perpendicular 
planes. 

6.1.2 STRESS TENSOR 

 

As described earlier, the stress tensor represents stresses like so: 

𝐹௉ധധധ ൌ  ൥
𝜎௫ 𝜏௫௬ 𝜏௫௭
𝜏௬௫ 𝜎௬ 𝜏௬௭
𝜏௭௫ 𝜏௭௬ 𝜎௭

൩ 
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6.1.3 MOHR'S CIRCLE 

This representation is used to visualize the 
relationships between the normal and shear stresses 
acting on various inclined planes at a point in a stressed 
body. 

Mohr’s Circle can also be used to calculate principal 
stresses, maximum shear stresses and stresses on 
inclined planes. 

 

The circle is named after its developer, German Civil 
Engineer Otto Mohr. (1835-1918)  

 

The endpoints of the stress vectors for each direction in a σ-𝜏 coordinate system fall within 
two arc triangles: 

 

Where 𝜏 = 0, those directions are the principal directions. 

They are mutually perpendicular. 

DEFINITION: If 𝑛ത is a principal direction, then 

𝜌௡തതത ൌ 𝜎௡𝑛ത 

Principal plane: in which one of the principal stresses is 0. 

The endpoints of the stress vectors corresponding to the directions in the principal planes 
are located on the principal planes. 

IT IS CONVENIENT TO DRAW A MOHR CIRCLE WHEN AT LEAST ONE PRINCIPAL 
DIRECTION IS KNOWN. 
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6.2 PLANAR STRESS STATE 

For trusses, rods, the stress state is planar. 

It is valid in all cases where there is only one normal and one shear stress (pair) in the 
stress tensor, and they fall in a plane. 

 

For a planar voltage state, one of the principal stresses is always zero. 

 

The spatial elementary unit can be converted to a simpler, planar version: 
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7 UNIDIRECTIONAL COMPLEX LOADS  

1. Only tension (σ): Normal force + bending moment 

Inclined bending 

Excentric tension/compression 

2. Only shear (𝜏): Shearing force + twist 

Does not exist! 

 

7.1 INCLINED BENDING 

Definition: The moment vector is not parallel to any of the prime moment of inertia axes of the 
cross-section. 

 

Calculation: Simply the superposition of two straight bendings. 

 

Stress state 
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7.2 ECCENTRIC TENSION / COMPRESSION 

Definition: The load is eccentric when the resultant of the force system acting on the rod is 
parallel to the axis of the rod but not in the centroid of the cross-section. 

 

Solution: Reduction of the eccentric load to the centroid. Result: moment and force. 

Stress state: 

  

Calculation: superposition of tensile stress from tension and bending  
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8 STRESS THEORIES 

8.1 MULTIDIRECTIONAL COMPLEX LOADS 

Simultaneous tensile-compressive (σ) and shear (𝜏) stresses 

• Bending + shearing 

• Bending + torsion 

• Tension-compression + torsion 

• Tension-compression + shearing 

• Bending + shearing + tension 

• Bending + shearing + torsion 

• Bending + tension + torsion 

• Tension + torsion + shearing 

• Bending + tension + shearing + torsion 

Superposition does not work. Reduced stress is required 

Spatial stress state: 

 

Planar stress state: 
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8.2 COULOMB’S THEORY 

Failure occurs at a point in the material when the maximum normal stress at that point 
reaches the tensile or compressive failure strength. 

According to Coulomb, the reduced stress is equal to the highest absolute value of the 
principal stresses. 

 

For brittle materials, Coulomb's theory gives a good description of failure when there is a 
dominant principal stress, compared to which the other two principal stresses are less 
dangerous. 

8.3 HUBER - VON MISES – HENCKY (HMH) THEORY 

Two stress states are equally dangerous to failure if their deformation energies are equal. 

 

 

The HMH theory gives a good description of the occurrence of failure for ductile materials. 

8.4 MOHR'S THEORY 

Two general spatial stress states are equally dangerous 
for failure if the diameters of their corresponding 
maximum Mohr circles are equal.  

According to Mohr, a stress state in a point is 
characterised by the diameter of the largest Mohr circle 
for damage. 

 

Mohr's theory gives a good prediction of the occurrence of 
failure for ductile materials.  

The reduced stress calculated by Mohr and HMH theory differ only slightly.  
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8.5 PLANAR PRINCIPAL STRESS 

 

MOHR’S PLANAR STRESS CIRCLE DIAGRAM DRAWING PROCESS 

1. Draw a cartesian σ-𝜏 coordinate system. 

2. Measure σx on the horizontal axis. 

3. Measure 𝜏xy at σx and 𝜏yx at 0. 

4. Connect the obtained points, obtain the center and radius of circle 1-2. 

5. We draw the MOHR circle 1-2.  

6. If necessary for the calculation, draw circles 1-3 and 2-3. 

7. Calculate the values of K and R.  𝐾 ൌ
ఙೣ

ଶ
; 𝑅 ൌ ඥ𝐾ଶ ൅ 𝜏௫௬

ଶ ; 

8. From this we calculate σ1, σ2, and φ. 𝜎ଵ ൌ 𝐾 ൅ 𝑅; 𝜎ଶ ൌ 𝐾 െ 𝑅; tan 2𝜑 ൌ
ଶఛೣ೤

ఙೣ
; 

 

From these, the equations for the principal stresses can be obtained, but it is best not to use 
them, the circle is more reliable. 

𝜎ଵ ൌ ఙೣ

ଶ
൅ ටቀ

ఙೣ

ଶ
ቁ

ଶ
൅ 𝜏௫௬

ଶ ; 𝜎ଶ ൌ ఙೣ

ଶ
െ ටቀ

ఙೣ

ଶ
ቁ

ଶ
൅ 𝜏௫௬

ଶ  
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The sign of 𝜏 is determined in the local right-handed n-m coordinate system. 

 
n is perpendicular to the plane under consideration, and the sign of 𝜏 is shown on m. 

 

With this method, the sign of 𝜏 can be determined in any position or rotation of the 
elementary unit. 
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9 MULTIDIRECTIONAL COMPLEX LOADS 

9.1 SIMULTANEOUS BENDING AND SHEARING 

In reality, shearing is always paired with bending. 

Example:  

Stress distribution:  

 

 

 

 

Stress state: 

 

 

 

 

Calculation of the stresses: 

  

and  

 

Where: 

Ty - shear force 

Mhz - bending moment 

Iz – second moment of area of the cross-section calculated in the z-axis 

a - x dimension of the cross-section at the point of inspection. 

S1z - static moment of the area of the cross-section above the point of inspection calculated 
in the z axis.  
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STATIC MOMENT OF SHEAR 

The static moment of the area of the cross-section above the point of inspection in the z 
axis which was used in the formula of the shear stress is calculated like so: 

 

The area of the cross-section above the point of 
inspection is multiplied by the centroid distance from z 
axis, thus obtaining the static moment of that area on the 
z axis. 

 

 

 

 

E.g. rectangle: 

  

 

 

 

 

 

 

So, the stress distribution curve is a parabola of second degree.  
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9.2 SIMULTANEOUS BENDING AND TORSION 

This is a very frequent complex load. Example: axis of any gear. 

 

The beam is loaded by two perpendicular moments: 

 

Stress state: 

  

Calculation of the stresses: 

 

and 
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Stress distribution: 

 

Stresses in the dangerous points A and B: 

 

Now the calculation of the reduced stress is required in the dangerous points. 

Mohr’s circle at any point P of the beam, for positive normal stress: 

 

Reduced stresses at the dangerous points:

 

 

β=4 according to Mohr. 

β=3 according to HMH. 

Thus, the maximum reduced stress: 

 

From these, we can introduce reduced moment: 

 

  



Modul_2022 // Machine Component Design and Mechanics 

Dávid CSONKA // Gyula VASVÁRI 

DESIGN AND CALCULATION OF MACHINE COMPONENTS 

 

 

48
 

9.3 SIMULTANEOUS TENSION-COMPRESSION AND TORSION 

The case when the structure is twisted about and pushed/pulled along its axis. Example: 
drilling. 

 

There is a normal force and a moment vector acting in the centroid of the cross-section and 
parallel to it. 

 

Stress state: 

  

Stress calculation: 
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Stress distribution: 

Dangerous points are all the points on the 
perimeter of the cross-section circle. 

 

Reduced stresses at the dangerous points:

 

 

β=4 according to Mohr. 

β=3 according to HMH. 

 

DIMENSIONING METHOD IN THE CASE OF SIMULTANEOUS TENSION-
COMPRESSION AND TORSION: 

A simple iteration procedure: 

1. We dimension for torsion, neglecting tension for the moment. 

2. Check the selected (standard) sizing of the beam for simultaneous tensile and 
torsional loads. 

3. If the beam does not fit, a larger standard size is selected. 

4. Repeat steps 2-3 as necessary. 
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10 CENTRALLY PRESSED SLENDER STRUCTURES  

 

Buckling: 

•  A loss of stability 

• After buckling high values of deformation occurs as the 
result of relatively low force increase 

 

 

 

10.1 ELASTIC BUCKLING 

The moment at any point on the beam with an x coordinate: 

M = y*Fkrit 

The connection between the moment and deformation in y direction is 
the differential equation of an elastic curve: 

𝑦ᇱᇱ ൌ െ
𝑀ሺ𝑥ሻ
𝐸 ⋅ 𝐼ଶ

ൌ
𝐹௞௥௜௧

𝐸 ⋅ 𝐼ଶ
⋅ 𝑦 

௥௘௢௥ௗ௘௥௘ௗ
ሱ⎯⎯⎯⎯⎯⎯ሮ  𝑦ᇱᇱ ൅

𝐹௞௥௜௧

𝐸 ⋅ 𝐼ଶ
⋅ 𝑦 ൌ 0 

Where I2 is the smallest moment of inertia of the cross-section.  

By introducing 𝛼ଶ ൌ ிೖೝ೔೟

ா⋅ூమ
; we get 𝑦ᇱᇱ ൅ 𝛼ଶ𝑦 ൌ 0;  Euler’s differential 

equation. 

This equation is a linear, homogeneous differential equation of the 
second order with constant coefficients. 

The general solution of Euler’s  𝑦ᇱᇱ ൅ 𝛼ଶ𝑦 ൌ 0; is 

𝒚 ൌ 𝑨 ⋅ 𝒔𝒊𝒏ሺ𝜶𝒙ሻ ൅ 𝑩 𝒄𝒐𝒔ሺ𝜶𝒙ሻ ; 

A and B can be determined from the boundary conditions. 

1. At x = 0; y= 0, as the end of the beam does not move in y direction. 

2. At x = L; y= 0, as the other end of the beam does not move in y direction either. 

The value of y in the equation 𝑦 ൌ 𝐴 ⋅ 𝑠𝑖𝑛ሺ𝛼𝑥ሻ ൅ 𝐵 𝑐𝑜𝑠ሺ𝛼𝑥ሻ can be 0 only if B is 0, as cos(0) is 
1, and not 0. 
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The other part, 𝐴 ⋅ 𝑠𝑖𝑛ሺ𝛼𝑥ሻ can be 0 if A is 0, but then there is no buckling. If A is not 0, then 
𝑠𝑖𝑛ሺ𝛼𝑥ሻ has to be.  

In conclusion, we are looking for the solutions of 𝑠𝑖𝑛ሺ𝛼𝑥ሻ ൌ 0. 

𝑠𝑖𝑛ሺ𝛼𝑥ሻ ൌ 0  if  𝛼𝑥 ൌ k ∗ 𝜋   

where k is a positive integer. 

As x = L; the equation is: 𝑠𝑖𝑛ሺ𝛼𝐿ሻ ൌ 0. 

Thus: 𝜶𝑳 ൌ 𝐤 ∗ 𝝅  

 

 

Introducing L0 as the length of a half sine wave of the buckling beam, where k=1: 

𝜶𝑳𝟎 ൌ 𝝅; therefore 𝛼 ൌ గ

௅బ
 and 𝛼ଶ ൌ గమ

௅బ
మ   and remember that 𝛼ଶ ൌ ி೎ೝ೔೟

ா⋅ூమ
 

Finally we get Euler’s formula for flexible buckling: 𝐹௖௥௜௧ ൌ గమ⋅ா⋅ூమ

௅బ
మ  

And the critical stress is: 𝜎௖௥௜௧ ൌ ிೖೝ೔೟

஺
ൌ గమ⋅ா⋅ூమ

୅⋅௅బ
మ  

Calculation of buckling length: 𝐿଴ ൌ 𝛽 ∗ 𝐿 

Where 𝛽 depends on the end constraints of the beam.  
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𝛽  values by end constraints to determine buckling length: 

 

𝐿଴ ൌ 𝛽 ∗ 𝐿  

𝐹௖௥௜௧ ൌ
𝜋ଶ ⋅ 𝐸 ⋅ 𝐼ଶ

𝐿଴
ଶ  
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10.2 PLASTIC BUCKLING 

 

Euler’s formula only works in the material’s flexible region. 

Elastic buckling: high slenderness 

Plastic buckling: low slenderness 

 

10.2.1 DETERMINING THE TYPE OF BUCKLING 

 

Introducing λ , the slenderness ratio: 

λ ൌ  
𝐿଴

𝑖ଶ
 

Where i2 is the lesser radius of gyration: 

𝑖ଶ ൌ ඨ
𝐼ଶ

𝐴
  

The slenderness ratio separating plastic and elastic buckling regions: 

λ஺ ൌ  𝜋ඨ
𝐸
𝜎஺
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λ஺ is a material property. Examples: 

Steel:  ~105 

Wood:  ~100 

Cast iron:  ~80 

If the slenderness ratio is lower than λ஺ the buckling is plastic, and Tetmajer’s formula is used 
to calculate the critical stress: 

σ௖௥௜௧ ൌ 𝑎 െ 𝑏 ∗ λ  

a and b are also material properties. Examples: 

Steel:  σ௖௥௜௧ ൌ  (310-1,14 λ) MPa; 

Wood: σ௖௥௜௧ ൌ  (29,3-0, 194λ) MPa; 

Cast iron:  σ௖௥௜௧ ൌ(776-12λ+0, 053λ2) MPa; 
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11 SPRINGS 

 

As springs deform under load, they store mechanical work in the form of deformation 
energy and then convert it back into mechanical work. The linear relationship between the 
deformation and the force that causes the deformation makes the spring suitable for force 
measurement as well. 

Springs can be very diverse in their function, shape, and behaviour. The choice of material 
and the sizing must consider the stresses to which the spring will be subjected. For springs 
where the load is very frequently alternating (e.g., engine valve spring), the allowable stress 
should be kept below the fatigue limit to avoid fatigue failure. 

 

11.1 RELATIONSHIPS THAT CHARACTERISE THE SPRINGS 

 
1. The relationship between the deformation and the loading force 

 
f = f (F) 

 
2. The relationship between the loading force and the stress: 

 
𝜎 ൌ 𝜎ሺ𝐹ሻ 

 
3. The relationship between deformation and stress: 

f = f (𝜎) 

 
4. The amount of stored deformation work gives an indication of the degree of utilisation 

of the spring. 
 

SPRINGS BY TYPE OF DEFORMATION: 
 
1. contracted / tensioned springs. 
2. torsion springs. 
3. bent springs. 
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11.2 LEAF SPRING 

The straight leaf spring is bent type, and can be 
dimensioned using the relationships already 
described. 

 

The inspected spring is a cantilever with a 
rectangular cross-section of dimension s x v. 

The relationship between deformation and force.  

𝑓 ൌ ி௟య

ଷூா
; where: 𝐼 ൌ ௦௩య

ଵଶ
 

Calculation of the maximum stress of the bent ring at the constraint: 

𝜎 ൌ
𝑀
𝐼

𝑒; 

The maximum moment is 𝑀 ൌ 𝐹𝑙, and e is half of thickness v, thus 

𝜎 ൌ
𝐹𝑙
𝐼

∙
𝑣
2

; 

Reordered:  
ி

ூ
ൌ ଶ∙ఙ

௟∙௩
െ 𝑡 

We can substitute the above equation in 𝑓 ൌ ி௟య

ଷூா
; obtaining the formula for deformation 

in the factor of stress: 

𝑓 ൌ
2𝜎
𝑙𝑣

∙
𝑙ଷ

3𝐸
ൌ

2
3

∙
𝑙ଶ

𝑣
∙

𝜎
𝐸

 

All three formulas are suitable for calculation. 
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11.3 TORSION SPRING 

The end of the straight, cylindrical rod is twisted by Mt = F∙p moment. 
 

 
The polar second moment of area of the cross section: 

𝐼௣ ൌ
𝑑ସ𝜋
32

 

The rotation angle of the end of the rod in relation to the constraint: 

𝜑 ൌ
𝑀௧𝑙
𝐼௣𝐺

 

The moment from this equation: 

𝑀௧ ൌ
𝜑𝐼௣𝐺

𝑙
ൌ 𝐹 ∙ 𝑝 

Shear stress due to the moment: 

𝜏 ൌ
𝑀௧

𝐼௣
∙

𝑑
2

 

Substitute the value of Mt here, then: 

𝜏 ൌ
𝜑𝐼௣

𝑙𝐼௣
∙

𝑑
2

ൌ
𝜑 ∙ 𝐺 ∙ 𝑑

2𝑙
 

Thus: 

𝜑 ൌ 2
𝜏
𝐺

∙
𝑙
𝑑

 

And the work accumulated in the torsion spring: 

𝐿 ൌ
1
2

𝑀௧𝜑 ൌ
1
4

 
𝜏ଶ

𝐺
𝑉 

where 𝑉 ൌ ௗమగ

ସ
𝑙 is the volume of the spring.  
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11.4 HELICAL COIL SPRING 

The coil spring is perhaps the most commonly used type of spring. The spring is loaded by 
tension or compression at its ends in the direction of the cylinder axis. In the case of a 
tensioned spring, the threads move away from each other and the pitch increases), in the 
case of a compressed spring, the threads move closer together and the pitch decreases). 

 

All the cross-sections of the spring are loaded by a 
moment  

M = F*r. 

The moment vector can be decomposed into two 
components: 

Mh parallel to the plane of the cross-section  

Mt perpendicular to the plane of the cross-section. 

 

If the angle of attack α is small: 

sin α ൎ0 and Mh = Fr∙sin(α) ൎ 0, 

the bending stress can be neglected. 

Since cos α ൎ 1, the torsion moment is: 

Mt = Fr∙cos(α) ൎ Fr 

Accumulated deformation energy in the spring: 

𝐿 ൌ
1

2𝐼௣𝐺
න 𝑀௧

ଶ

௟

଴

𝑑𝑠 

𝑀௧ ൌ 𝐹𝑟,                         𝑀௧
ଶ ൌ 𝐹ଶ 𝑟ଶ 

Sbustituted: 

𝐿 ൌ
1

2𝐼௣𝐺
 න 𝐹ଶ𝑟ଶ𝑑𝑠 ൌ  

1
2𝐼௣𝐺

 𝐹ଶ𝑟ଶ𝑙

௟

଴
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The displacement is obtained by Castigliano's theorem by differentiating L by F: 

𝑓 ൌ
𝜕𝐿
𝜕𝐹

ൌ
1

2𝐼௣𝐺
2 𝐹 𝑟ଶ𝑙 ൌ  

𝐹𝑟ଶ𝑙
𝐼௣𝐺

 

The shear stress in the cross-section: 

𝜏 ൌ
𝑀௧

𝐼௣
∙

𝑑
2

ൌ
𝐹𝑟
𝐼௣

∙
𝑑
2

 

Thus: 

𝐹𝑟 ൌ
2𝜏𝐼𝑝

𝑑
 

Substitute this into the displacement equation: 

𝑓 ൌ
𝐹𝑟ଶ𝑙
𝐼௣𝐺

ൌ
2𝐼௣𝑟𝑙
𝑑𝐼௣𝐺

 

𝑓 ൌ 2
𝜏
𝐺

 ∙   
𝑟
𝑑

𝑙 

In practice, the r/d ratio 3 ~ 5 is the usual range. 
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12 PIPES, VESSELS 

12.1 PRESSURE OF A FLUID ON THE WALL OF AN ARBITRARY SHAPE VESSEL 

The weight of the fluid resting in a vessel of arbitrary shape is neglected; the pressure p of 
the fluid is perpendicular to the vessel wall and its magnitude is constant. If the vessel is 
divided into two parts by a plane AB, both parts are in equilibrium.  

 

The resultant of the pressure acting on AB planes surface of area A0: 

𝑅ଵ ൌ 𝑝 ∙  𝐴௢  

The resultant of the pressure R acting on the surface of curve AB is in equilibrium with R1: 

𝑅 ൌ 𝑅ଵ ൌ 𝑝 ∙  𝐴௢  

Take the plane AC of area A1, enclosing an arbitrary angle α with the plane AB, and the plane 
BC of area A2, perpendicular to it. 

The resultant of the fluid pressure on the AC plane: 

𝐹ଵ ൌ 𝑝 ∙  𝐴ଵ 

and the resultant of the fluid pressure on the BC plane: 

𝐹ଶ ൌ 𝑝 ∙  𝐴ଶ 

Since 𝐴ଵ ൌ 𝐴଴ ∙ cos 𝛼; and 𝐴ଶ ൌ 𝐴଴ ∙ sin 𝛼; 

 𝐹ଵ ൌ 𝑝 ∙ 𝐴଴ ∙ cos 𝛼 ൌ 𝑅 ∙ cos 𝛼; and  𝐹ଶ ൌ 𝑝 ∙ 𝐴଴ ∙ sin 𝛼 ൌ 𝑅 ∙ sin 𝛼 

The same result is obtained from the vector triangle: 

 𝐹ଵ ൌ 𝑅 ∙ cos 𝛼; and  𝐹ଶ ൌ 𝑅 ∙ sin 𝛼; 

 

Thus, the projection of the resultant R of the pressures acting on the surface of AB 
curve in a given direction is equal to the pressure of the fluid on the projection of the 
surface AB perpendicular to that direction. 

The theorem is equally valid for liquid, vapour, or gas.  
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12.2 DIMENSIONING OF THIN-WALLED CYLINDRICAL TUBES AND VESSELS 
SUBJECTED TO INTERNAL PRESSURE. 

The object of inspection is a thin-walled cylindrical vessel with sealed ends and the following 
properties: 

D = 2r: inner diameter [mm] 

v: wall thickness [mm] 

p: internal pressure [N/mm2] 

The weight of the medium the 
vessel, which can be very 
significant in some cases, is not 
considered in the calculations, we 
focus on the effect of the internal 
pressure p. 

If the internal pressure p is not too 
large and the wall is thin, the 
distribution of the stresses in the 
wall can be assumed to be uniform.  

 

The internal pressure induces a tangential ϭt stress in the vessel wall. Its value can be 
calculated by examining the equilibrium of an elementary unit cut from the wall of the vessel. 
Its length is 1 cm, and the height is described with the central angle, ∆𝜑. 

The pressure and the stress are in equilibrium like so: 

𝑝𝑟∆𝜑
2

ൌ 𝜎௧ ∙ 𝑣 ∙ sin
∆𝜑
2

 

Since ∆𝜑 is small, sin 
∆ఝ

ଶ
ൎ  ∆ఝ

ଶ
 , thus 

𝝈𝒕 ൌ
𝒓 ∙ 𝒑

𝒗
ൌ

𝑫𝒑
𝟐𝒗

 

We obtained THE BOILER FORMULA. 
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If the vessel is closed at the ends, there is not only a tangential but also an axial (axial) 𝜎௔ 
stress.  

The resultant of the internal pressure on the end faces of a cylindrical vessel: 

𝐹௔ ൌ 𝑝 
𝐷ଶ𝜋

4
 

This force is in the longitudinal direction and can be assumed to be uniformly distributed over 
the cylinder surface 𝐴௔ ൌ 𝐷 ∙ 𝜋 ∙ 𝑣. Thus: 

𝜎௔ ൌ
𝐹௔

𝐴௔
ൌ 𝑝

𝐷ଶ𝜋
4𝐷𝜋𝑣

ൌ
𝐷𝑝
4𝑣

 

The axial ϭa stress is therefore just half of the tangential ϭt stress: 

𝜎௔ ൌ
𝜎௧

2
 

This is why pressurized tank failure happens on its side and not at its ends. 

 

A vulgar example for pressurized tank failure on its side 
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The stresses can be visualized on an elementary unit taken from the vessel wall. The edges 
of the small cube are in the axial, radial and tangential directions.  

 

Note, the since there is no shear stress, the stresses are principal stresses. 

The sequence of principal stresses is: 

ϭ1=ϭt; ϭ2=ϭa and ϭ3=-p. 

The stress state of the elementary unit is spatial, thus, according to Mohr's theory, the reduced 
stress is expressed in terms of the principal stresses: 

ϭred= ϭ1 - ϭ3. 

The reduced stress is equal to the diameter of the largest Mohr circle ϭ1 = ϭt and ϭ3 = - p 
substituted: 

𝜎௥௘ௗ ൌ 𝜎௧ െ  ሺെ𝑝ሻ ൌ
஽௣

ଶ௩
൅ 𝑝. 

Since p is significantly smaller compared to ϭt, the sizing of vessels and pipes is in practice 
based on the boiler formula: 

𝜎௧ ൌ
𝐷𝑝
2𝑣

൑ 𝜎௠௔௫ 

 

𝜎௠௔௫ ൌ 𝜎௧ ൌ
𝐷𝑝
2𝑣

ൌ 𝜎௠௘௚ 
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12.3 THIN-WALLED SPHERE SUBJECTED TO INTERNAL PRESSURE 

A thin-walled sphere is subjected to an internal pressure p. If the sphere is cut into two parts 
along a diametral plane, the resultant force on the section is given by the internal pressure: 

𝐹 ൌ
𝐷ଶ𝜋

4
∙ 𝑝 

The tensile stress on surface 
A=D π v: 

𝜎 ൌ
𝐹
𝐴

ൌ
𝐷ଶ𝜋𝑝
4𝐷𝜋𝑣

ൌ
𝐷𝑝
4𝑣

 

 

The stresses can be visualized on an elementary unit taken from the vessel wall. The stresses 
are principal stresses. 

 

Based on the Mohr circle, the reduced stress 

𝜎௥௘ௗ ൌ 𝜎ଵ െ 𝜎ଷ ൌ
𝐷𝑝
4𝑣

െ ሺെ𝑝ሻ ൌ
𝐷𝑝
4𝑣

൅ 𝑝 

The value of p can be neglected relative to 
஽௣

ସ௩
. Thus, the equation will be: 

𝜎௥௘ௗ ൌ 𝜎 ൌ
𝐷𝑝
4𝑣

ൌ 𝜎௠௘௚ 

 

The LNG carrier Aristidis I. transporting liquified natural gas in spherical containers. 
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12.4 PIPES SUBJECTED TO EXTERNAL PRESSURE 

Pipes and vessels behave differently under external pressure than under internal pressure. 
While the internal pressure acting on the pipe or vessel tends to smooth out the irregularities, 
the external pressure can cause buckling. External pressure should preferably be applied 
only to cylindrical pipes. 

 

For an infinitely long pipe, pk is the critical external pressure at which the pipe will buckle. 

𝑝௄ ൌ  
𝐸
4

 
𝑣ଷ

𝑟ଷ  

E is the elasticity coefficient of the pipe material, 

v the wall thickness, 

r is the inner radius. 

 

 

The glass tunnel of the Tropicarium in Budapest is a good example for an externally loaded pipe 
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